Mechanism of anionic conduction across ClC.
نویسندگان
چکیده
ClC chloride channels are voltage-gated transmembrane proteins that have been associated with a wide range of regulatory roles in vertebrates. To accomplish their function, they allow small inorganic anions to efficiently pass through, while blocking the passage of all other particles. Understanding the conduction mechanism of ClC has been the subject of many experimental investigations, but until now, the detailed dynamic mechanism was not known despite the availability of crystallographic structures. We investigate Cl(-) conduction by means of an all-atom molecular dynamics simulation of the ClC channel in a membrane environment. Based on our simulation results, we propose a king-of-the-hill mechanism for permeation, in which a lone ion bound to the center of the ClC pore is pushed out by a second ion that enters the pore and takes its place. Although the energy required to extract the single central ion from the pore is enormous, by resorting to this two-ion process, the largest free energy barrier for conduction is reduced to 4 kcal/mol. At the narrowest part of the pore, residues Tyr-445 and Ser-107 stabilize the central ion. There, the bound ion blocks the pore, disrupting the formation of a continuous water file that could leak protons, possibly preventing the passage of uncharged solutes.
منابع مشابه
Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells.
Cystic fibrosis (CF) is a lethal inherited disease that results from abnormal chloride conduction in epithelial tissues. ClC-2 chloride channels are expressed in epithelia affected by CF and may provide a key "alternative" target for pharmacotherapy of this disease. To explore this possibility, the expression level of ClC-2 channels was genetically manipulated in airway epithelial cells derived...
متن کاملThe fast gating mechanism in ClC-0 channels.
We investigate and then modify the hypothesis that a glutamate side chain acts as the fast gate in ClC-0 channels. We first create a putative open-state configuration of the prokaryotic ClC Cl- channel using its crystallographic structure as a basis. Then, retaining the same pore shape, the prokaryotic ClC channel is converted to ClC-0 by replacing all the nonconserved polar and charged residue...
متن کاملAnion permeation in human ClC-4 channels.
ClC-4 and ClC-5 are mammalian ClC isoforms with unique ion conduction and gating properties. Macroscopic current recordings in heterologous expression systems revealed very small currents at negative potentials, whereas a substantially larger instantaneous current amplitude and a subsequent activation were observed upon depolarization. Neither the functional basis nor the physiological impact o...
متن کاملConversion of the 2 Cl(-)/1 H+ antiporter ClC-5 in a NO3(-)/H+ antiporter by a single point mutation.
Several members of the CLC family are secondary active anion/proton exchangers, and not passive chloride channels. Among the exchangers, the endosomal ClC-5 protein that is mutated in Dent's disease shows an extreme outward rectification that precludes a precise determination of its transport stoichiometry from measurements of the reversal potential. We developed a novel imaging method to deter...
متن کاملMolecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations.
The muscle Cl- channel, ClC-1, is a member of the ClC family of voltage-gated Cl- channels. Mutations in CLCN1, the gene encoding this channel, cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen). The functional characterization of these naturally occurring mutations not only allowed a better understanding of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 86 2 شماره
صفحات -
تاریخ انتشار 2004